If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+3+7x=0
a = 4; b = 7; c = +3;
Δ = b2-4ac
Δ = 72-4·4·3
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-1}{2*4}=\frac{-8}{8} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+1}{2*4}=\frac{-6}{8} =-3/4 $
| .9y=-2 | | 20-4y=32 | | -1=x-2x2 | | 3x+1/4-x-2/2=1/4 | | 15x+36=146 | | t=-16t^2+216 | | 3y+14=10y | | 10*z/3=6 | | 1=5–2j | | 5x+48=-3 | | 15=10n | | 5x+49/9=-3 | | 14+f=68.9+6.7 | | (x-2)/4-(3x+5)/28=-3 | | n–6=12 | | s–21=27 | | 2(x+3)+20=0 | | 18=3p | | 2(x+3)20=0 | | .75(r-12)=-6 | | 99+w×10=189 | | p^2+88=2p^2-12 | | 4x=3.9 | | g+8=19 | | 3(x+7)/6-5=4 | | 4/3/5z=3 | | 43/5z=3 | | 4x+12=8(x+6) | | 1/8n-3=3 | | (10n-1)(10n-3)=0 | | 9(v+5)=2v+10 | | 2n+10=10 |